Context-Free Grammars

Grammars and Regular Grammars

For natural languages, each has its own grammar. A Chinese sentence follows Chinese language grammar. An English sentence follows its own grammar.

A sentence may follow a correct grammar without proper meaning. For instance, the following sentence is grammatically correct but nonsense:

A desk eats a lion.

For programming languages, Pascal programs must follow the Pascal programming grammar. A C program has to obey the C programming grammar.

Even numbers must also follow their rules to be written down. The rules can be as follows.

An integer can be either nonnegative number or negative number.
A number consists of one digit or many digits.
For a one digit number, it could be $0,1, \ldots, 9$.
For a many digits number, it starts with a digit of $1, \ldots, 9$, and follows with many digits of $0,1, \ldots, 9$.

Using the following graph structure could be easier to understand the above rules.

The following structure consists of rewriting rule, sequence, selection and repetition properties.
(1) Rewriting rule : Left part A is replaced by the right part B .

$$
\mathrm{A}::=\mathrm{B}
$$

(2) Sequence : That B follows A is shown as

(3) Selection : That select one item from A, B and C is shown as

(4) Repetition : Repeat to select item A for 0,1 , or many times.

The structure of integers can be written as follows.

< negative > :: $\quad \longrightarrow$ <nonnegative> \longrightarrow

The structure of integers can also be written in Backus-Naur form shown as follows. The notation \rightarrow stands for rewriting and the symbol | stands for selection. Repetition is replaced by recursion.
<integer> \longrightarrow <nonnegative> \mid <negative>
<negative > \longrightarrow - <nonnegative>
<nonnegative> \longrightarrow <single> \mid <nonzero> <number>

$$
\begin{aligned}
& \text { <number> } \longrightarrow \text { <single> } \mid \text { <single> <number> } \\
& \text { <nonzero> } \longrightarrow 1|2| 3|4| 5|6| 7|c| 9 \\
& \text { <single> } \longrightarrow 00|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

The symbols used in Backus-Naur form are variables and terminals.
The set of variables is \{<integer>, <nonnegative>, <negative>, <nonzero>, <single>, <number>\}

The set of terminals is $\{-, 0,1,2,3,4,5,6,7,8,9\}$.
To generate a string of terminals 123 , we start from the variable <integer> and follow the above rules as follows.
<integer> \square <nonnegative>
\Longrightarrow <nonzero> <number>
$\Longrightarrow 1$ <number>
$\Longrightarrow 1$ <single> <number>
$\Longrightarrow 12$ <number>
$\Longrightarrow 12$ <single>
$\Longrightarrow 123$

The notation \Longrightarrow stands for derivation.

The notation $\stackrel{*}{\longleftrightarrow}$ stands for many derivations.

We have that
<integer> $\stackrel{*}{\rightleftarrows} 123$

Regular Grammars

A regular language can be accepted by a finite state automaton and denoted by a regular expression.

In this section, we shall show that a regular language can be generated by a regular grammar.

Definition 1: A regular grammar $G=(V, T, P, S)$ is defined as follows.
(1) V is a finite set of variable. S is the start symbol in V .
(2) T is a finite set of terminals, and $\mathrm{T} \cap \mathrm{V}=\varnothing$.
(3) P is a finite set of productions or rewriting rules.

Each production is of the form:

$$
\begin{aligned}
& A \rightarrow a B \text {, where } A, B \in V \text { and } a \in T \text {, or } \\
& A \rightarrow a \text {, where } A \in V \text { and } a \in T .
\end{aligned}
$$

Definition 2: The set generated by a regular grammar $G=(V, T, P$, S) is $\left\{\omega \in \mathrm{T}^{*} \mid \mathrm{S} \Rightarrow^{*} \omega\right\}$ denoted by $\mathrm{L}(\mathrm{G})$.

Example 2: Find $L(G)$ for $G=(V, T, P, S)$, where $V=\{S, A, B\}$, $\mathrm{T}=\{0,1\}$ and P contains the following productions:

$$
\begin{aligned}
& \mathrm{S} \rightarrow 0 \mathrm{~A}|1 \mathrm{~B}| 1 \\
& \mathrm{~A} \rightarrow 0 \mathrm{~S}|1 \mathrm{~B}| 1 \\
& \mathrm{~B} \rightarrow 0 \mathrm{~B}|1 \mathrm{~A}| 0
\end{aligned}
$$

Solution:

The set generated by a regular grammar G is

$$
\left\{\omega \in\{0,1\}^{*} \mid \omega \text { has odd number of } 1 \text { 's }\right\} .
$$

See also example 3 and example 2 of section 2.5 for the result.

Theorem 1: Let L be a regular language. Then there is a regular grammar G such that $L(G)=L$.

Proof:

L is regular, there exists a DFA $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ accepting L .
Construct a regular grammar $G=(V, T, P, S)$ by the following.
Assume that $\mathrm{Q} \cap \Sigma=\varnothing$. Let $\mathrm{V}=\mathrm{Q}, \mathrm{S}=\mathrm{q}_{0}, \mathrm{~T}=\Sigma$.
If $\delta(\mathrm{q}, \mathrm{a})=\mathrm{p}$ and $\mathrm{p} \notin \mathrm{F}$, then P contains a production as

$$
\mathrm{q} \rightarrow \mathrm{a} p \text {, where } \mathrm{a} \in \mathrm{~T}, \mathrm{p}, \mathrm{q} \in \mathrm{~V} \text {. }
$$

If $\delta(\mathrm{q}, \mathrm{a})=\mathrm{p}$ and $\mathrm{p} \in \mathrm{F}$, then P contains a production as

$$
\mathrm{q} \rightarrow \mathrm{ap} \mid \mathrm{a}
$$

It is easy to show that $\delta^{*}(\mathrm{q}, \omega)=\mathrm{p} \in \mathrm{F}$, iff $\mathrm{S} \Rightarrow^{*} \omega$.

Theorem 2: Let G be a regular grammar G. Then $L(G)$ is regular.

Proof:

Let $G=(V, T, P, S)$ be a regular grammar.
Construct an NFA $\mathrm{M}=\left(\mathrm{Q}, \sum, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ as follows.
Assume that $\mathrm{q}_{\mathrm{f}} \notin \mathrm{V}$. Let $\mathrm{Q}=\mathrm{V} \cup\left\{\mathrm{q}_{\mathrm{f}}\right\}, \mathrm{q}_{0}=\mathrm{S}, \sum=\mathrm{T}$ and $\mathrm{F}=\left\{\mathrm{q}_{\mathrm{f}}\right\}$.
If $\mathrm{q} \rightarrow$ a p is a production in P , then

$$
\delta(\mathrm{q}, \mathrm{a})=\mathrm{p}, \text { where } \mathrm{a} \in \sum, \mathrm{p}, \mathrm{q} \in \mathrm{Q}
$$

If $q \rightarrow a$ is a production in P, then

$$
\delta(q, a)=q_{f}
$$

It is easy to show that $\delta^{*}(\mathrm{q}, \omega)=\mathrm{q}_{\mathrm{f}} \in \mathrm{F}$, iff $\mathrm{S} \Rightarrow^{*} \omega$.

Example 3: Find a DFA M such that $L(M)=L(G)$ for a regular grammar $G=(V, T, P, S)$, where $V=\{S, A, B\}, T=\{0,1\}$ and P contains the following productions:
$\mathrm{S} \rightarrow 0 \mathrm{~A}|1 \mathrm{~B}| 1 \quad \mathrm{~A} \rightarrow 0 \mathrm{~S}|1 \mathrm{~B}| 1 \quad \mathrm{~B} \rightarrow 0 \mathrm{~B}|1 \mathrm{~A}| 0$
Solution:
By theorem 2, construct an NFA M_{1} to accept $\mathrm{L}(\mathrm{G})$ and modify to a DFA M as follows.

M

By the previous theorems and theorems in chapter 2, we have the following theorem.

Theorem 3: The class of regular languages, the class of DFA's, the class of regular expressions and the class of regular grammars are equivalent.

Note :

(1) A DFA can recognize a regular set.
(2) A regular expression can represent a regular set.
(3) A regular grammar can generate a regular set.

